
Subspace Generative Adversarial Learning
for Unsupervised Outlier Detection

Bachelor’s Thesis of

Denis Wambold

at the Department of Informatics

Institute for Program Structures and Data Organization (IPD)

Reviewer: Prof. Dr.-Ing. Klemens Böhm

Second reviewer: TT-Prof. Dr. Pascal Friederich

Advisor: M.Sc. Jose Cribeiro-Ramallo

29. May 2023 – 29. September 2023

Karlsruher Institut für Technologie

Fakultät für Informatik

76128 Karlsruhe

I declare that I have developed and written the enclosed thesis completely by myself, and

have not used sources or means without declaration in the text, and that I have observed

the Guidelines for Research Integrity of Good Scientific Practice at the KIT Karlsruhe.

Karlsruhe, 29. September 2023

. .

(Denis Wambold)

Abstract

In recent years, Deep Learning haswitnessed remarkable advancements, with unsupervised

generative methods gaining widespread attention as they are applicable across diverse

domains. Amongst these methods, Generative Adversarial Networks (GAN) [17] gained

traction due to their ability to generate realistic data. With this ability, GANs have proven

to yield impressive results for Outlier Detection [24]. While there are many different

approaches to connect GANs with Outlier Detection, such as Outlier Detection by a latent

subspace [44] or Active Adversarial Learning (AAL) [30], none of these models take into

consideration that some outliers are not visible on the full Feature Space [25]. These

hidden outliers remain unfound by current state-of-the-art GAN models. In response to

this challenge, we introduce a novel extension of the AAL framework, connecting GANs

with an Ensemble of Feature Subspaces. We propose the Feature Ensemble GAN (FeGAN),

a GAN specifically tailored for Subspace Search with multiple Discriminators, each over

their own, unique Feature Subspace. This innovative approach uncovers outliers that may

exist exclusively within specific Feature Subspaces, an aspect otherwise overlooked by

conventional methods.

Our experiments demonstrate the promising results and great potential of FeGAN for

Outlier Detection. FeGAN consistently outperforms baseline models, highlighting the

significance of identifying outliers that current state-of-the-art methods often miss.

i

Zusammenfassung

In den letzten Jahren hat Deep Learning bemerkenswerte Fortschritte gemacht, wobei

vor allem unüberwachte, generative Methoden große Aufmerksamkeit erregt haben, da

sie in vielen verschiedenen Bereichen anwendbar sind. Unter diesen Methoden haben

Generative Adversarial Networks (GAN) [17] aufgrund ihrer Fähigkeit, realistische Daten

zu generieren, an Bedeutung gewonnen. Mit dieser Fähigkeit liefern GANs nachweislich

beeindruckende Ergebnisse bei der Ausreißererkennung [24]. Bekannte Ansätze hierfür

sind die Ausreißererkennung durch einen latenten Unterraum [44] oder Active Adversarial

Learning (AAL) [30]. Trotz der verschiedenen Möglichkeiten, GANs mit der Außreiße-

rerkennung zu verbinden, zeigen alle bisher bekannten Modelle diesselbe Schwäche: Sie

berücksichtigen nicht, dass einige Ausreißer nur in Unterräumen der Attribute und nicht

im gesamtem Raum sichtbar sind [25]. Diese versteckten Ausreißer werden von aktuellen

GAN-Modellen nach dem neuesten Stand der Technik nicht entdeckt. Als Reaktion auf

diese Herausforderung präsentieren wir eine neue Erweiterung des AAL-Frameworks, die

GANs mit einem Ensemble aus Attribut-Unterräumen verbindet. Wir stellen das Feature

Ensemble GAN (FeGAN) vor, ein GAN, das speziell auf die Unterraumsuche mit mehreren

Diskriminatoren spezialisiert ist. Jeder dieser Diskiminatoren lernt auf seinem eigenen

Attribut-Unterraum. Dieser innovative Ansatz entdeckt Ausreißer, die möglicherweise

ausschließlich innerhalb bestimmter Attribut-Unterräume existieren, ein Aspekt, der sonst

von herkömmlichen Methoden oft übersehen wird.

Unsere Experimente zeigen die vielversprechenden Ergebnisse und das große Poten-

zial von FeGAN für die Ausreißererkennung. FeGAN übertrifft durchweg Basismodelle

und unterstreicht die Bedeutung der Identifizierung von Unterraum-Ausreißern, die mit

aktuellen Methoden nach dem neuesten Stand der Technik häufig übersehen werden.

iii

Contents

Abstract i

Zusammenfassung iii

1. Introduction 1

2. Fundamentals 3
2.1. Neural Networks . 3

2.1.1. Updating the weights and bias vectors 4

2.2. Autoencoders . 4

2.3. Generative Adversarial Networks . 4

2.3.1. Training . 6

2.4. Novelty Detection . 6

2.5. Ensemble methods . 7

2.5.1. Feature Bagging . 7

3. Related Work 9
3.1. Non-generative Novelty Detection . 9

3.1.1. Shallow methods . 9

3.1.2. Kernel methods and One-Class Support Vector Machines 9

3.2. Generative Novelty detection . 10

3.2.1. BiGAN . 11

3.2.2. AnoGAN . 12

3.2.3. Multiple-Objective Generative Adversarial Active Learning (MO-

GAAL) . 13

4. FeGAN 15
4.1. Introduction . 15

4.2. Ensemble method . 15

4.3. Target Function . 16

4.3.1. Architecture . 17

4.3.2. Training Details . 19

5. Experimental Design 21
5.1. Experimental settings . 21

5.1.1. Computational Resources and Technical Details 21

5.1.2. Data sets . 21

5.1.3. Baselines . 22

5.1.4. Hyperparameters . 23

v

Contents

5.1.5. Evaluation Metric . 23

5.2. Experiments . 24

5.2.1. One-Class classification . 24

5.2.2. Sensitivity to parameter K . 25

6. Evaluation 27
6.1. One-Class Classification . 27

6.1.1. Sensitivity to parameter K . 29

6.1.2. Training . 29

6.1.3. Limitations . 31

7. Conclusion 33
7.1. Future Work . 33

Bibliography 35

A. Appendix 39
A.1. Code . 39

vi

List of Figures

2.1. Example architecture of an Autoencoder, traversed from left to right. . . 5

2.2. A Figure from [17] showing the convergence of 𝑝𝑔 to 𝑝𝑑𝑎𝑡𝑎 from left (early

in training) to right (advanced training). 5

3.1. BiGAN’s architecture; taken from [15] . 11

3.2. MO-GAAL’s architecture; taken from [56] 13

4.1. FeGAN’s architecture, where 𝑝𝑥 is the distribution of the original data, 𝑝𝐺
is the distribution of the Generator and 𝑝𝑧 is the distribution of the latent

space. 16

4.2. This figure summarizes the architectures of FeGAN. 20

6.1. Sensitivity of FeGAN to the number of Discriminators K 29

6.2. Training history of FeGAN V2 on InternetAds 30

6.3. Training history of FeGAN V2 on Ionosphere 31

6.4. Training history of FeGAN V2 on Annthyroid 32

vii

List of Tables

5.1. Comparison of the used data sets . 21

6.1. Results of One-Class classification. Median ROC-AUC ± standard deviation. 28

6.2. Results for Conover-Iman’s test on the rankings of the models 28

ix

1. Introduction

In recent years, deep generative methods have enabled several subfields of Machine Learn-

ing to make great progress. Previously overshadowed by supervised methods, these

unsupervised methods now thrive as they yield impressive performance without the need

of labels. Particularly, the introduction of Generative Adversarial Networks (GAN) [17]

and their game-theoretical approach to Deep Learning proved how powerful generative

methods are. GANs manage to generate realistic data, thus they are suited for many differ-

ent Machine Learning tasks such as Novelty Detection or Image Generation. Especially for

high-dimensional data, GANs impress with their performance [24]. Over the years, several

extensions to the GAN framework have been published [30, 44], leveraging the generative

nature of the model to detect outliers. While there are models like MO-GAAL [30], which

embed an Ensemble structure to GANs to generate outliers, or AnoGAN [44], which works

with a latent representation of data to detect outliers, all of these GAN extensions still

lack one property: Subspace Search. In high-dimensional spaces, outliers are sometimes

only, or better, visible in some Feature Subspaces, making it hard to find them when only

looking at the full set of Features [25].

That is why we want to combine the generative strength of GANs with a Feature

Subspace Ensemble to tackle this missed opportunity. In this thesis, we develop and

implement a Feature Ensemble GAN (FeGAN) for Outlier Detection on Feature Subspaces.

Not only does this novel approach require a new target function, but it also faces challenges

such as handling dependencies between features and the redesign of the vanilla zero-sum-

game GANs play. Utilizing multiple Discriminators, FeGAN concentrates on independent

Feature Subspaces to classify hidden outliers.

After extending the GAN framework with an Ensemble structure of Discriminators, each

fitted on individual Feature Subspaces, we adjust the vanilla target function to incorporate

one Generator and multiple Discriminators. Following Novelty Detection experiments

against several shallow and deep baselines then prove our initial instinct and show the

great potential of FeGAN for unsupervised Novelty Detection.

We start by introducing necessary fundamentals for the research of this thesis. After

that, we present related work and go over their strengths and weaknesses. Next, we present

our novel method FeGAN and give details about the extension of the GAN framework,

followed by an explanation of carried out experiments. Finally, we evaluate all experiments

thoroughly and conclude our work.

1

2. Fundamentals

In this chapter, we will introduce fundamentals of Neural Networks, Autoencoders, GANs,

Ensemble methods and Novelty Detection. First, we introduce Neural Networks and

their basic functionality. After that, we present two different Machine Learning models,

Autoencoders and GANs. Next, we introduce the field of Novelty Detection. Finally, we

present Ensemble methods and Feature Bagging.

2.1. Neural Networks

A Neural Network (NN) is a computational model consisting of many interconnected

nodes, so called neurons. These neurons are organized in one of three categories of layers:

Input layer, hidden layer or output layer. The input layer receives user-given input (data),

hidden layers process the data, and the output layer then produces a result. While a NN

only has one input and one output layer, it can have multiple consecutive hidden layers.

There are many types of hidden layers, each fulfilling a distinct function. Each layer has a

fixed but arbitrary size, which is defined by the amount of neurons in that layer. Essentially,

each layer represents a specific function. Let 𝐼 be the input layer, ℎ𝑖 one of 𝑛 ∈ N hidden

layers and 𝑂 the output layer. The resulting Neural Network consisting of these layers,

here showed as functions, has the following structure:

𝐹 = (𝑂 ◦ ℎ𝑛 ◦ · · · ◦ ℎ1 ◦ 𝐼)

At this point, it is very important to mention that 𝐹 is differentiable almost everywhere.

Each neuron in the NN has a weight and each layer has an additional bias vector. These

weights and bias vectors are crucial to the functionality of the Neural Network and define

how the NN works. A layer itself represents a linear function. Now, linear functions by

themselves are oftentimes not complex enough for many problems. Thus, a layer has the

possibility to use an activation function, which introduces non-linearity to the NN. That

way the Neural Network can capture more complex relationships. Without the activation

functions, the whole NN could be represented by a single linear function.

As Neural Networks are a branch of Machine Learning, different learning paradigms of

Machine Leaning also apply:

• Supervised Learning: In this scenario, the given data set contains labels for all data

samples. All labels are available to the model.

• Unsupervised Learning: In this scenario, there are no labels at all for the given data

set. Hence, the model cannot leverage additional information provided by labels.

3

2. Fundamentals

• Semi-supervised Learning: In this scenario, there are a few data samples with

available labels. The model can then use these few given labels to propagate them

onto other, yet unlabeled, data samples.

Obtaining samples can be very costly, require human expertise, or can take too much

time until they are available. In these cases, one would choose either unsupervised or

semi-supervised learning. However, if the labels are available, they can bring valuable

information to the learning process of a model [2].

2.1.1. Updating the weights and bias vectors

The learning process of a Neural Network boils down to updating the weights and bias

vectors until seemingly optimal ones are found. To achieve this, a target function 𝐹 , that

will be optimized, is required. The learning process consists of two steps: First, a forward

pass of an input sample through the Neural Network and all of its layers is executed. After

that, the target function is applied. Since our goal is to minimize the target function with

regards to the parameters (weights and bias vectors), we now use gradient descent [40]

with learning rate 𝛾 to do so.

𝜔𝑡+1 = 𝜔𝑡 − 𝛾∇𝐹 (𝜔𝑡)
During this process, back-propagation [42] allows us to update our parameters. Given

the target function, the target value of a forward pass is propagated backwards through

the layers. Then, while traversing the layers, the derivative of each layer is calculated

gradually and connected via the chain rule (of calculus). This has to be done for every single

parameter in the Neural Network until they converge or the change between iterations

falls below a threshold. After that, ideally, the best parameters are found. However, this

is not always the case. Since gradient descent aims to minimize the target function, it is

possible to get stuck in local minima during the process. In that case, either the learning

rate has to be adjusted or other mechanisms like momentum [40] have to be implemented.

2.2. Autoencoders

Autoencoders (AE) [43] consist of two Neural Networks: An Encoder 𝐸 and an Decoder 𝐷 .

The goal of an AE is to reconstruct data. Given a data sample 𝑥 , which 𝐸 takes as input, 𝐸

maps 𝑥 to a latent space representation of smaller dimension. Then 𝐷 receives this latent

representation as input and maps is back to the original Feature Space of 𝑥 . The AE aims

to minimize the reconstruction error of this process.

2.3. Generative Adversarial Networks

After their introduction, Generative Adversarial Networks [17] quickly attracted science’s

interest due to their unsupervised advancements. GANs manage to implicitly capture the

underlying data distribution of a given data set by optimizing an adversarial zero-sum

game. One can imagine the GAN training procedure as a feud between an art forger and

an art expert. While the art expert’s job is to be really good at spotting fake art, the art

4

2.3. Generative Adversarial Networks

Figure 2.1.: Example architecture of an Autoencoder, traversed from left to right.

forger tries to trick the expert. During the game, the art forger becomes better and better

at faking artwork, while, at some point, the art expert might not be able to distinguish

between real and fake artwork anymore.

AGAN consists of two adversarial parts: a Generator and a Discriminator. The Generator

𝐺 is a differentiable function in the form of a Neural Network with parameters 𝜃𝑔. Given a

data setX and a noise variable 𝑧, representing randomly drawn latent input, the Generator

represents a function 𝐺 : 𝑧 ↦→ 𝑝𝑔, where 𝑝𝑔 is the Generator’s output distribution. We

define the Generator as𝐺 (𝑧;Θ𝑔). The Generator tries to mimic the underlying distribution

of X, here called 𝑝𝑑𝑎𝑡𝑎, and thus trains to get 𝑝𝑔 to converge to 𝑝𝑑𝑎𝑡𝑎 [17]. On the other

side of the game, the Discriminator 𝐷 is a differentiable function in the form of a Neural

Network with parameters Θ𝑑 aswell. We define this as 𝐷 (𝑥 ;Θ𝑑). In this case, 𝐷 (𝑥)
calculates the probability that 𝑥 comes from 𝑝𝑑𝑎𝑡𝑎 rather than 𝑝𝑔. 𝐷 aims to maximize

the probability of labeling all given samples, real and generated, correctly. Meanwhile,𝐺

aims to minimize this probability. In other words,𝐺 tries to maximize the probability of 𝐷

labeling generated samples as real ones.

Figure 2.2.: A Figure from [17] showing the convergence of 𝑝𝑔 to 𝑝𝑑𝑎𝑡𝑎 from left (early in

training) to right (advanced training).

In Figure 2.2, the black dotted line represents 𝑝𝑑𝑎𝑡𝑎 , the green line represents 𝑝𝑔 and

the blue dashed line is the decision of the Discriminator. You can see, once the Generator

learned to generate realistic samples well, the Discriminator cannot distinguish between

real and generated samples anymore and thus is not better than random guessing. Realis-

tically, this scenario is only achieved under optimal theoretical circumstances and not in

practice.

5

2. Fundamentals

2.3.1. Training

We train GANs by playing the following zero-sum game between the Generator𝐺 and the

Discriminator 𝐷

min

𝐺
max

𝐷
E𝑥∼𝑝𝑑𝑎𝑡𝑎 (𝑥) [log𝐷 (𝑥)] + E𝑧∼𝑝𝑧 (𝑧) [log(1 − 𝐷 (𝐺 (𝑧)))], (2.1)

where 𝑝𝑧 is the latent input distribution. To reach its goal, it is sufficient for𝐺 to minimize

log(1 − 𝐷 (𝐺 (𝑧))). In early stages of training, G does not know how to generate realistic

samples yet. This leads to the Discriminator rejecting the generated samples with a high

confidence. In some cases, this results in an insufficient gradient for 𝐺 , hindering 𝐺 from

learning well [17]. To solve this, it is possible for G to maximize log(𝐷 (𝐺 (𝑧))) instead
as this provides stronger gradients in early training [17]. The target function 2.1 can be

equivalently reformulated as the binary cross entropy 𝑦 log(𝑝) + (1 −𝑦) log(1 − 𝑝), where,
for a given sample 𝑥 , 𝑝 = 𝐷 (𝑥) and

𝑦 =

{
1 if x is real

0 if x is generated

𝐺 and 𝐷 play this game until D reaches Nash equilibrium or another stopping criterion.

In the case of the Nash equilibrium, the Generator has become so good at generating

real-looking samples, that 𝐷 (𝑥) is no better than random guessing the origin of the sample

[17].

2.4. Novelty Detection

Given a data setX, Novelty Detection, also called One-Class classification by some authors,

describes the process of identifying anomalous data samples (called outliers in this thesis)

by learning first the non-anomalous distribution. Intuitively, we call a data sample 𝑥 an

outlier, if it does not fit with the other data samples of X and is too different from the

rest of the data set. The challenge of this classification task is to decide when a sample is

flagged as such.

Let us give an example. We assume that a data set X ∈ R follows an underlying data

distribution 𝑝 𝑓 𝑠𝑡 . Now, we observe 𝑥
′
from another data set X′ ∈ R following another

distribution 𝑝𝑠𝑛𝑑 . Assuming these two distributions are different enough from each other,

there is a high chance that

P𝑝 𝑓 𝑠𝑡 (𝑥′) < 𝜀, 𝜀 << 1.

This implies that 𝑥′ would be a statistical anomaly in X. Thus, 𝑥′ should be classified as

an outlier if we classify on X.

Outlier Detection. Contrary to the general understanding of Outlier Detection, Novelty

Detection focuses on classifying new, unseen, data samples. Additionally, there is no gen-

eral consensus in the field of Outlier Detection, whether Novelty Detection is unsupervised

or semi-supervised [37]. Under the assumption that outliers are rare in data sets, it does

6

2.5. Ensemble methods

not make a difference and thus, Novelty Detection can be called unsupervised and one can

sample the training set without filtering outliers. However, as this only holds under the

assumption of rarity, one can also argue that Novelty Detection has to be semi-supervised.

Though this might seem obvious as labels for the positive class are needed, it is not. Even

in literature, there are contradicting statements for Novelty Detection methods like Deep

SVDD [41]. In their publication, the original authors explicitly state that the method is

unsupervised, while other authors call it semi-supervised [10] as labels for the normal

class are required.

In this thesis, we abide to the assumption of rarity of outliers and call Novelty Detection

unsupervised.

2.5. Ensemble methods

Ensemble methods describe a unique learning method combing the strengths of different

underlying models [14]. An Ensemble typically consists of multiple classifiers working

on the same data. The Ensemble takes into consideration each classifier’s decision and

acts according to the actual implementation of it. Simple Ensembles oftentimes use the

weighted average of all classifiers’ decisions [14]. Let 𝐸 be the Ensemble consisting of

𝑁 ∈ N classifiers 𝐶𝑖 and 𝑜 ∈ 𝐷 the object to be classified. For a weighted average, the

Ensemble’s decision is

𝐸 (𝑜) =
𝑁∑︁
𝑖=1

𝑤𝑖𝐶𝑖 (𝑜),

where𝑤𝑖 is the weight of𝐶𝑖 and
∑𝑁
𝑖=1𝑤𝑖 = 1. This approach allows to obtain high-accuracy

classifications by combining multiple classifiers. [14] shows that such an Ensemble’s

classification accuracy is at least as high as a single classifier’s.

An important Ensemble method to mention here explicitly is Bootstrap Aggregation

(Bagging) [6]. In a Bagging Ensemble, each Classifier 𝐶𝑖 trains on a different subset 𝑆𝑖 of

the original data. Each subset is drawn randomly with replacement.

2.5.1. Feature Bagging

Feature Bagging [21] is an Ensemble learning method trying to reduce restrictions arising

in high-dimensional data sets oftentimes described as the curse of dimensionality [26].

In a Feature Bagging Ensemble (FBE), each classifier trains and predicts only in a subset

of features. Again, each subset is drawn randomly and with replacement. We use the

following algorithm to draw 𝐾 ∈ N Feature Subspaces.

Outliers tend to hide in high-dimensional feature spaces [25]. These so called subspace-

outliers are only visible in Feature Subspaces [25, 57]. As distances between objects

in high-dimensional spaces grow more alike, there is a high probability of not finding

outliers when applying Outlier Detection algorithms to these high-dimensional spaces

[58]. Therefore a Feature Bagging Ensemble allowing for an efficient Subspace Search can

be very powerful for high-dimensional classification tasks such as Novelty Detection [22,

8, 1]. By looking at subspaces of a smaller dimension, in which outliers are better visible

7

2. Fundamentals

Algorithm 1 FeatureSubspaceSelection

Input: Dimension of the data set 𝐷 ; Number of classifiers 𝐾

Output: A Feature Subspace for each classifier

Randomly draw K integers in the range of 1..D
𝑑𝑖𝑚𝑠 ← RandomDraw(D,K)

𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒𝑠 ← Empty list

for 𝑖 ∈ {1, ...𝐾} do
Randomly draw subspace with dims[i] features
𝑠𝑝𝑎𝑐𝑒 ← DrawSubspace(dims[i])

Prevent using the same subspace for different classifiers
while 𝑠𝑝𝑎𝑐𝑒 ∈ 𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒𝑠 do

𝑠𝑝𝑎𝑐𝑒 ← DrawSubspace(dims[i])

Add 𝑠𝑝𝑎𝑐𝑒 to 𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒𝑠

return 𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒𝑠

and the probability of finding them is higher, the accuracy of the prediction can be greatly

increased [1].

8

3. Related Work

In this chapter we provide an overview of related work and methods, their strengths and

weaknesses, starting with non-generative Outlier Detection methods. We then introduce

Generative Adversarial Network (GAN) [17] methods for Outlier Detection as well as

One-Class classification [32]. Finally, we propose FeGAN, the model developed in this

Bachelor’s thesis.

Let X ⊂ R𝑑 be a data set consisting of 𝑁 ∈ N data samples.

3.1. Non-generative Novelty Detection

In this section we introduce the non-generative methods used to build a part of the baseline

FeGAN is compared against. Namely, we present shallow methods followed by Kernel and

deep Kernel methods.

3.1.1. Shallow methods

We define shallow methods as methods, that do not use Neural Networks. While there

are Machine Learning models such as Support Vectors Machines, we call shallow, there

are also other, very different, algorithms we call shallow. Especially for Classification

and Outlier Detection tasks, there are powerful shallow algorithms. Most shallow Outlier

Detection algorithms fall under one of three categories: Distance-Based, density-based, or

angle-based. [9] evaluates shallow methods. In their study, they compare these methods by

their best possible performance (with tuned hyperparameters). Specifically, they compare

12 different methods, versions of LOF [7], KNN [18] and ABOD [27] amongst others. For

further information, please visit [9]. For our work, we focus on the overall best-performing

methods of this study: LOF and KNN.

Shallow methods like KNN and LOF can be very powerful, especially on lower dimen-

sional data sets. On high-dimensional data sets though, these two methods do not always

manage to fully capture the underlying data distribution well. Especially properties related

to the curse of dimensionality [26], such as the sparsity of spaces [52] or NN-Instability

[3], are a tough challenge for distance and/or density-based shallow methods.

3.1.2. Kernel methods and One-Class Support Vector Machines

Kernel methods [23] are pattern analysis algorithms using linear functions to solve non-

linear problems. A Kernel method relies on a Kernel function, which projects data samples

onto a higher-dimensional space. In that higher-dimensional space, the Kernel method

9

3. Related Work

then looks for a hyperplane to classify samples. One of the most popular Kernel methods

is the Support Vector Machine (SVM) [20].

SVM. SVMs are supervised models used for classification and regression. To fulfil its

task, the SVM splits the training data into two categories, exclusively and projects the

samples into space such that the gap between the samples of different categories is as big

as possible. This procedure is not always a Kernel method as the SVM can solve linear

problems without the use of a Kernel. However, if needed, the SVM uses the Kernel trick

to solve non-linear problems [45].

Additionally, with models such as OC-SVM [46] and SVDD [49], Kernel methods have

also been introduced to the field of One-Class classification. Recently, there has been an

expansion into deep learning, combining principles of Kernel methods with the variety of

deep learning methods. A popular example of this is Deep SVDD [41].

SVDD. Similar to OC-SVM, Support Vector Data Descriptions (SVDD) [49] also project

samples to a higher-dimensional space. However, SVDD now fits a hypersphere with

center 𝑎 with minimal volume containing all samples. To do so, they solve

min𝑅2 +𝐶
∑︁
𝑖

𝜉𝑖 with constraint | |𝑥𝑖 − 𝑎 | |2 ≤ 𝑅2 + 𝜉𝑖,

where 𝑅 is the radius, 𝜉𝑖 ≥ 0 is a penalizing parameter and𝐶 controls the trade-off between

the volume and the errors.

Then, samples projected too far outside of the hypersphere are considered outliers. If

the Kernel function 𝐾 used for OC-SVM and SVDD has the property that 𝐾 (𝑥, 𝑥) = 1

∀𝑥 ∈ X, then the methods are equivalent.

3.2. Generative Novelty detection

Generative methods vary and come in deep and shallow forms. Depending on the actual

underlying method, they have many different use cases and thus it is very important

to choose the right one. Examples for shallow generative methods are the naive bayes

classifier or the plain Kernel density estimation. All of these methods are well known,

and work well if used correctly. However, shallow methods face difficulties in high-

dimensional data sets, such as choosing relevant attributes or growing distances, which

reduce their overall quality and ability to predict precisely [58]. That is why, especially for

high-dimensional data sets, it is useful to opt for deep methods.

For the deep generative methods, we look at current state-of-the-art GAN Outlier

Detection and One-Class classification methods. Specifically, we introduce BiGAN [15],

AnoGAN [44] and MO-GAAL [30].

Due to their self-supervised generative nature, GANs are amongst the most popular deep

learning methods for Outlier Detection [51, 13]. While there are different approaches to

this problem, two stand out: Vanilla GAN methods and GAN methods using autoencoder-

like extensions. Most vanilla GAN methods for Outlier Detection focus on the full Feature

Space to identify outliers. Contrary to that, Autoencoder-like GAN models rely on a

10

3.2. Generative Novelty detection

smaller embedded subspace (latent space) rather than the full space to detect outliers. In

this work, we extend this approach even further. We detect outliers by learning multiple

Feature Subspaces instead of only one embedded subspace.

3.2.1. BiGAN

In some cases, it can be very useful to work with a semantic latent representation of data

instead of the data itself. A GAN normally uses some kind of (semantic) latent space to

generate data. However, prior to the introduction of BiGAN [15], there was no way for a

GAN to learn the inverse mapping of the Generator. BiGAN has been proposed to tackle

this issue.

Figure 3.1.: BiGAN’s architecture; taken from [15]

BiGAN is a GAN framework extending the vanilla GAN architecture by an Encoder 𝐸.

While the Generator 𝐺 learns a mapping from a latent input spaceZ to the sample space

S, 𝐸 learns a mapping of normal samples 𝑥 ∈ S back to the latent spaceZ. At this point, it

is important to mention, that there is no direct (or indirect) communication between𝐺 and

𝐸. The Encoder never sees generated samples 𝐺 (𝑧). To achieve this goal, two adjustments

to the GAN training process are made: While training the GAN, the Encoder is trained

simultaneously. On top of that, the Discriminator 𝐷 of the GAN is modified aswell. 𝐷 now

also takes input from the latent space and uses this to decide, whether a sample has been

generated or not. Overall, the training objective is now

min

𝐺,𝐸
max

𝐷
E𝑥∼𝑝𝑑𝑎𝑡𝑎 (𝑥) [E𝑧∼𝑝𝐸 (·|𝑥) [log(𝐷 (𝑥, 𝑧))]︸ ︷︷ ︸

log(𝐷 (𝑥,𝐸 (𝑥)))

] + E𝑧∼𝑝𝑍 (𝑧) [E𝑥∼𝑝𝐺 (·|𝑧) [log(1 − 𝐷 (𝑥, 𝑧))]︸ ︷︷ ︸
log(1−𝐷 (𝐺 (𝑧),𝑧))

],

where 𝑝𝑋 is the distribution of S and 𝑝𝑍 is the distribution ofZ. Under optimal training

circumstances, meaning that 𝐺 and 𝐸 are trained optimally, 𝐺 and 𝐸 will be approximate

inverses [15].

BiGAN manages to learn the inverse mapping of the Generator with a seemingly simple

extension of the original GAN framework. This allows to work with the sample space

S as well as the latent representation fromZ. Even though, with a few adjustments, it

is possible to use BiGAN as an anomaly detection method [54], BiGAN’s actual goal is

to learn the (approximate) inverse mapping of the Generator and not Outlier Detection

explicitly.

11

3. Related Work

3.2.2. AnoGAN

Closely related to BiGAN, with their AnoGAN framework, [44] proposed one of the

first Outlier Detection methods for GANs in 2017. AnoGAN uses a vanilla GAN, trained

on positive (normal) samples, to learn a mapping from the latent input space Z of the

Generator 𝐺 to the realistic sample space S. During this step, the Generator 𝐺 and the

Discriminator 𝐷 are trained using the standard GAN minimax game:

min

𝐺
max

𝐷
E𝑥∼𝑝𝑑𝑎𝑡𝑎 (𝑥) [log𝐷 (𝑥)] + E𝑧∼𝑝𝑍 (𝑧) [log(1 − 𝐷 (𝐺 (𝑧)))],

where 𝑝𝑑𝑎𝑡𝑎 is the original distribution of S and 𝑝𝑍 is the distribution ofZ. Once the adver-

sarial training of the GAN is finished (for example when𝐷 reaches a Nash equilibrium), the

Generator learned a mapping𝐺 : 𝑧 ↦→ 𝑥 fromZ to S . Now AnoGAN initiates the second

step to learn the inverse of the Generator mapping, leveraging that the latent space has

smooth transitions [38], meaning that two similar inputs of the latent space will produce

similar outputs of the sample space. In other words, if we treat𝐺 as a function, this means

that G is continuous and that there are no unexpectedly big leaps in output if the distance

between two inputs is small. If there would not be smooth transitions, learning the inverse

mapping would become more computationally expensive as the learning process would

rely more on non-deterministic behaviour.

The second step is an iterative process aiming to find the corresponding 𝑧 ∈ Z to

a given sample 𝑥 ∈ S such that 𝐺 (𝑧) is visually most similar to 𝑥 . Visual similarity is

measured by the residual loss L𝑅 . Given 𝑥 , AnoGAN randomly samples a 𝑧1 ∼ Z and

generates the output 𝐺 (𝑧1). Now a new loss function is applied to receive an updated

sample 𝑧2. This process is repeated iteratively via 𝛾 = 1, 2, ..., Γ backpropogation steps

until the best matching 𝑧Γ for 𝑥 is found. The new loss function mainly consists of two

parts, the residual loss and the discrimination loss. While the residual loss L𝑅 (𝑧𝛾) takes
into account the visual similarity between 𝑥 and 𝐺 (𝑧𝛾), the discrimination loss L𝐷 (𝑧𝛾)
enforces 𝐺 (𝑧𝛾) to lie on the sample space S.

L𝑅 (𝑧𝛾) =
∑︁
|𝑥 −𝐺 (𝑧𝛾) | and L𝐷 (𝑧𝛾) =

∑︁
|𝑓 (𝑥) − 𝑓 (𝐺 (𝑧𝛾)) |

Because of the unsupervised training, an intermediate layer 𝑓 (·) of the Discriminator is

used to specify the statistics of a sample [44]. The weighted sum of both losses is used as

the overall loss function for the learning process of the inverse.

L(𝑧𝛾) = (1 − 𝜆) · L𝑅 (𝑧𝛾) + 𝜆 · L𝐷 (𝑧𝛾)

The second step has to be executed for every single input sample 𝑥 . After learning the

inverse, one can derive an anomaly scoring system directly from L. This scoring system

does not have an upper bound, but a higher value represents a higher likelihood of the

sample being anomalous.

A(𝑥) = (1 − 𝜆) · R(𝑥) + 𝜆 · D(𝑥)

R(𝑥) and D(𝑥) stand for the values of L𝑅 (𝑧𝛾) and L𝐷 (𝑧𝛾) during the last iteration step,

respectively.

12

3.2. Generative Novelty detection

AnoGAN’s approach of taking the reconstruction error into consideration when clas-

sifying a data sample translates to an Outlier Detection by a latent space rather than all

features. Thus, the size of the latent space is crucial to AnoGAN’s ability of classifying.

Additionally, using a only single latent space to detect anomalies directly implies that

there is a high possibility of not all dependencies between features being fully represented

in high-dimensional spaces.

3.2.3. Multiple-Objective Generative Adversarial Active Learning (MO-GAAL)

[30]were the first to combine the strengths of the GAN architecturewith Ensemblemethods

for Outlier Detection. They first introduce SO-GAAL [30]. SO-GAAL builds on the GAAL

framework [56] to counter the lack of information caused by the curse of dimensionality.

Intuitively, GAAL proposes to generate samples, which the Discriminator is most uncertain

about. SO-GAAL uses this approach to generate potential outliers with the need of

uncertainty sampling [47]. The model’s Discriminator 𝐷 aims to distinguish between

normal and anomalous data by having the Generator 𝐺 generate potential informative

outliers. However, due to its "One Generator - One Discriminator" architecture, SO-GAAL

cannot overcome the mode-collapse [17] problem, which vastly reduces the performance

of a GAN. Hence, they extend SO-GAAL to create MO-GAAL.

Figure 3.2.: MO-GAAL’s architecture; taken from [56]

MO-GAAL consists of 𝑘 Generators 𝐺1:𝑘 and one Discriminator 𝐷 . The Generators

each follow their own objective to each learn the generation mechanism of a subset 𝑋𝑖 of

real data samples, individually. It is important to mention that all 𝑥 ∈ 𝑋𝑖 are similar to

each other and

⋃𝑘
𝑖=1𝑋𝑖 = X in order to provide a reasonable reference distribution for the

Generators. X is split by evaluating 𝐷 (𝑥) and grouping samples with similar values due

to the inverse of space smooth transition [38]. To properly train the Generators, the target

value of 𝐷 (𝐺𝑖 (𝑧)) is changed from 1 to𝑇𝑖 , which is a representative statistic of the samples

in 𝑋𝑖 . Requiring the samples in 𝑋𝑖 to be similar, the representative statistic is needed

and cannot be left out of training. Without it, the samples in 𝑋𝑖 are chosen randomly,

preventing the Generators from learning properly. An example for such a representative

statistic is the minimum output value of 𝐷 (𝑋𝑖). This adaptation leads to the following

optimization problem:

max

𝐷

1

2𝑛
[
𝑛∑︁
𝑗=1

log(𝐷 (𝑥 (𝑗))) +
𝑘∑︁
𝑖=1

𝑛𝑖∑︁
𝑗=1

log(1 − 𝐷 (𝐺𝑖 (𝑧 (𝑗)𝑖)))]

13

3. Related Work

max

𝐺𝑖

−1
𝑛
[
𝑛∑︁
𝑗=1

𝑇𝑖 log(𝐷 (𝐺𝑖 (𝑧 (𝑗)𝑖))) + (1 −𝑇𝑖) log(1 − 𝐷 (𝐺𝑖 (𝑧
(𝑗)
𝑖
)))],

where 𝑛 is the number of samples and 𝑛𝑖 is the number of potential outliers generated by𝐺𝑖 .

This model setup is able to handle the mode-collapse problem well while still generating

outliers to reach the goal of distinguishing outliers and normal data samples. However,

outliers are only detected on the full Feature Space. The mechanism of generating realistic

outliers becomes harder with a growing number of features, restricting the capability of

detecting those.

These state-of-the-art models and the advantages of Feature Ensembles for Outlier

Detection motivate us to develop a new Outlier Detection method combining both. With

FeGAN we want to utilize not only the generative properties of GANs but also leverage a

Feature Ensemble to create, to our knowledge the first, GAN model to detect anomalies

via Subspace Search. The use of a FBE allows us to look for subspace-outliers [25, 57],

which improves the quality of Outlier Detection in high-dimensional spaces, as this is

where subspace-outliers are common [25].

14

4. FeGAN

In this chapter, we formally introduce the model of this thesis, the Feature Ensemble

GAN (FeGAN). First, we present the motivation and idea behind the model. After that,

we explain the novel target function of FeGAN. Then, we explain how we incorporate

an Ensemble method into the GAN framework. Finally, we present the Neural Network

architectures we use for the Generator and Discriminators and go over details of the model

and training process.

4.1. Introduction

Current state-of-the-art GAN frameworks [30, 44] show that generative methods have

great potential as Outlier Detection methods. However, they lack one property. They do

not take into account that there are subspace outliers as they do not detect outliers on

different Feature Subspaces. Especially in high-dimensional spaces, this impacts prediction

quality negatively. The multi-view property of subspaces [33, 53] is required to detect

subspace outliers. Several authors show that implementing this property via efficient

subspace search improves prediction quality [25, 57].

FeGAN is a Generative Adversarial Active Learning method [30] for unsupervised

Subspace Outlier Detection. With FeGAN, we combine the strengths of generative methods

and Feature Subspace search to tackle this problem. Extending the GAN framework [17],

we add multiple Discriminators to the model to allow efficient Subspace Search. Since we

extend the framework, we have to adjust the original target function 2.1 to take into account

multiple Discriminators. Multiple Discriminators on their own are not capable of Subspace

Search without the assignment of unique Feature Subspaces for each Discriminator. FeGAN

thus implements Feature Bagging without repetition to solve this. In the following sections,

we explain in detail how FeGAN extends the GAN framework.

4.2. Ensemble method

Figure 4.1 shows the architecture for FeGAN’s Ensemble structure. It consists of one

Generator 𝐺 with 𝑘 Discriminators 𝐷𝑖 (𝑖 ∈ {1, ..., 𝑘}). Each Discriminator 𝐷𝑖 is assigned

their own Feature Subspace 𝑆𝑖 . We select these Subspaces via Feature Bagging without

repetition [21] using the FeatureSubspaceSelection algorithm (see Chapter 2). The

Subspaces are of different (random) sizes and and not disjoint. While the Discriminators

train independently, they share a joint impact on the Generator. That way, the Generator

implicitly learns the chosen Subspaces.

During training, the Generator generates potential informative outliers on the full set

of features. All Discriminators have access to the same data to train on, but project them,

15

4. FeGAN

Figure 4.1.: FeGAN’s architecture, where 𝑝𝑥 is the distribution of the original data, 𝑝𝐺 is

the distribution of the Generator and 𝑝𝑧 is the distribution of the latent space.

no matter if real or generated, onto their own Subspace 𝑆𝑖 and then predict. With this

setup, we look at subspaces rather than the full Feature Space to find outliers hiding in

said subspaces [25]. Different subspace drawing algorithms, such as HiCS [25], can be

implemented easily.

4.3. Target Function

Since the vanilla GAN zero-sum-game is only suited for one Generator and one Discrimina-

tor, we have to adjust it. Adding more Discriminators changes the target of the Generator.

For each individual Discriminator 𝐷𝑖 , the target function does not change from the original

target:

min

𝐺
max

𝐷
𝑉 (𝐷,𝐺) = E𝑥∼𝑝𝑑𝑎𝑡𝑎 (𝑥) [log𝐷 (𝑥)] + E𝑧∼𝑝𝑧 (𝑧) [log(1 − 𝐷 (𝐺 (𝑧)))] (4.1)

Each Discriminator thus plays a zero-sum-game against the Generator. This approach of

each Discriminator following their own objective, independent from other Discriminators,

stays close to the Multi-Objective approach of [30] where multiple Generators each play

their own game against one Discriminator. However, it is not possible for our Generator

to follow multiple targets and play multiple zero-sum-games simultaneously. To solve

this issue,𝐺 does not play against each Discriminator individually but rather against their

mean. Therefore, we formulate the Ensemble adversary of the Generator as:

𝐷̂ =
1

𝑘

𝑘∑︁
𝑖=1

𝐷𝑖

Thus, the Generator’s target function is

min

𝐺
max

𝐷̂

E𝑥∼𝑝𝑑𝑎𝑡𝑎 (𝑥) [log 𝐷̂ (𝑥)] + E𝑧∼𝑝𝑧 (𝑧) [log(1 − 𝐷̂ (𝐺 (𝑧)))] (4.2)

16

4.3. Target Function

This target function 4.2 is only valid if it is differentiable. We assume, by definition, 𝐷𝑖
(∀𝑖 ∈ 1..𝑘) is differentiable almost everywhere. Since the sum of differentiable functions

is differential and the multiplication with a factor does not affect differentiability, 𝐷̂ is

differentiable aswell. Therefore, we conclude that target function 4.2 is differentiable.

Similar to [17], we also derive a training target for the Generator from 4.2:

minE𝑧∼𝑝𝑧 (𝑧) [log(1 − 𝐷̂ (𝐺 (𝑧)))]

However, as explained in section 2.3.1, this target can result in insufficient gradient for𝐺

to learn properly in early stages of training. Analogous to [17], this is solved by using

maxE𝑧∼𝑝𝑧 (𝑧) [log(𝐷̂ (𝐺 (𝑧)))] = maxE𝑧∼𝑝𝑧 (𝑧) [log(
1

𝑘

𝑘∑︁
𝑖=1

𝐷𝑖 (𝑧))]

= maxE𝑧∼𝑝𝑧 (𝑧) [log(
1

𝑘
) + log(

𝑘∑︁
𝑖=1

𝐷𝑖 (𝑧))]
(4.3)

Because log(1
𝑘
) is constant, it is sufficient for G to solve maxE𝑧∼𝑝𝑧 (𝑧) [log(

∑𝑘
𝑖=1𝐷𝑖 (𝑧))].

Training algorithm. Our Ensemble structure in combination with the new target function

leads to the following training algorithm for FeGAN:

Algorithm 2 FeGAN training

Input: Data set X, Number of Discriminators K

Initialize Generator 𝐺
D is the dimension of X
𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒𝑠 ← FeatureSubspaceSelection(D,K)

Initialize Discriminators 𝐷1:𝐾 with unique subspaces
for 𝑒𝑝𝑜𝑐ℎ ∈ {1, ..., 𝑒𝑝𝑜𝑐ℎ𝑠} do

for 𝑏𝑎𝑡𝑐ℎ ∈ {1, ..., 𝑏𝑎𝑡𝑐ℎ𝑒𝑠} do
𝑛𝑜𝑖𝑠𝑒 ← Random noise 𝑧 (1), ..., 𝑧 (𝑚) from latent space

𝑑𝑎𝑡𝑎 ← Draw current batch 𝑥 (1), ..., 𝑥 (𝑚)

for 𝑗 ∈ {1...𝑘} do
Update Discriminator 𝐷 𝑗 by ascending the stochastic gradient
∇Θ𝐷𝑗

1

𝑚

∑𝑚
𝑖=1 [log(𝐷 𝑗 (𝑥 (𝑖))) + log(1 − 𝐷 𝑗 (𝐺 (𝑧 (𝑖))))]

Update generator by descending the stochastic gradient
∇Θ𝐺

1

𝑚

∑𝑚
𝑖=1 log(1 − 1

𝑘

∑𝑘
𝑗=1𝐷 𝑗 (𝐺 (𝑧 (𝑖))))

4.3.1. Architecture

The architecture of the Neural Network is crucial to the model’s performance. Choosing a

good architecture is difficult and choosing the best fitting architecture, assuming there

is one, might even be impossible. This is due to the excessive run time required to train

a network. In the case of FeGAN, we not only face one, but 𝑘 + 1 consecutively trained

17

4. FeGAN

networks, increasing the computation time by a factor of ≈ 𝑘 . With this constraint,

one cannot randomly try different architectures without losing a significant amount of

time. Thus, a lot a domain knowledge is required to select or find an optimal network

architecture [50, 12]. Without domain knowledge, the tuning of an architecture requires at

least some kind of knowledge about the data sets the model will work on [29]. Additionally,

the lack of labels in unsupervised and semi-supervised learning prohibits the use of a

validation set (otherwise, there would be enough labels for much preferred supervised

learning [2]). Without a validation set, tuning a model and the architecture is impossible,

as this would require decisions based on the test set, which is very bad practice and leads

to overfitting quickly [16]. Since this scenario is the case for FeGAN, we are forced to

choose an architecture capable of handling different types of datas sets prior to training.

Our Ensemble structure allows the use of multiple weak learners. While they run the

risk of overfitting on Feature Subspaces individually, they still help reduce overfitting of

the overall model [14]. Following a similar approach to MO-GAAL [30], we utilize Dense

Layers in our architecture. Dense Layers are fully connected hidden layers. This flexibility

makes them suitable for a wide range of tasks, which is especially useful without prior

knowledge about a data set. However, due to the simplicity of the structure of Dense

Layers, we propose two slightly different versions of FeGAN to be able to handle data sets

with different sizes and amounts of features.

V1. In the first version, the Generator comprises two Dense Layers of 𝐿 neurons, each. 𝐿

describes the dimension of the latent input space for the Generator. In our case, we set 𝐿

to the number of features. The Discriminator also consists of two Dense Layers, one with

𝑆 and one with one (1) neuron, where 𝑆 =
√︁
#𝑠𝑎𝑚𝑝𝑙𝑒𝑠 .

V2. For data sets with higher dimensions, we introduce a second version of FeGAN

aswell. In V2, we add two identical Dense Layers with 𝐿 neurons to the Generator and

two Dense Layers with 𝑆 neurons to the Discriminator.

Network details. For every Dense layer except for one, we use the ReLU activation

function to introduce non-linearity, as ReLU avoids the "vanishing gradient" problem

many deep networks face and is computationally efficient [48]. The last Dense layer

of each Discriminator is responsible for the final classification of the Discriminator and

returns a probability. For that layer, we use the Sigmoid activation function, as this is

common practice [35].

Keep in mind that the architecture for each Discriminator stays the same while the sizes

of the layers adjust to each specific Feature Subspace. This short description excludes the

input and the output layer.

In Figure 4.2, we show the different versions of FeGAN. The left most layer is the input

layer, while the last is the output layers. Every layer inbetween is a hidden (Dense) layer.

We fixed the dimension of the data set to be 8, the number of samples to 16 for this example.

18

4.3. Target Function

4.3.2. Training Details

To train FeGAN, we use a batch size of min(500, #𝑠𝑎𝑚𝑝𝑙𝑒𝑠) and update the parameters via

stochastic gradient descent [4]. Furthermore, themodel trains with a stop_epochs parameter.

Stop_epochs determines how many epochs the Generator trains for. After stop_epochs
epochs, the Generator stops training and only generates samples for the Discriminators

to train on. More specifically, the Discriminators train for a total of 3 ∗ stop_epochs
epochs. Though this mechanism can result in the overfitting of individual Discriminators,

it prevents an overfitting of the Generator. Since there is only one Generator, an overfitted

Generator would negatively impact the performance while overfitted Discriminators do not

(as much) due to the Ensemble structure. Also, to avoid getting trapped in local minima, we

employ momentum for V2. Lastly, as suggested in Chapter 2.3.1, we implement the target

function of FeGAN for the Generator and the Discriminators via binary cross entropy, as

this allows an easier implementation with TensorFlow [31].

19

4. FeGAN

(a) V1 architectures: Dark: Generator, Light: Discriminator

(b) V2 architectures: Dark: Generator, Light: Discriminator

Figure 4.2.: This figure summarizes the architectures of FeGAN.

20

5. Experimental Design

To allow reproducibility, we specify and explain the conditions under which we con-

duct experiments. This includes data sets, state-of-the-art baselines, evaluation metrics,

computational resources, hyperparameters, code and used libraries. First, we go over

computational resources, and technical details. Then, we present the data sets we use to

conduct the experiments. Next, we briefly introduce the SOTA baselines and our choice

of hyperparameters for those. After that, we explain the evaluation metrics used for the

experiments. Finally, we go over the experiments.

5.1. Experimental settings

5.1.1. Computational Resources and Technical Details

We run the experiments in a computational server running Ubuntu 22.04.2. The server

is equipped with a NVIDIA GeForce RTX 3090 GPU and AMD EPYC 7443P 24-Core

Processors paired with 132GB of RAM. All calculations were done using CUDA cores of

the GPU. The code is written in Python [39] and for the machine learning parts of our

model, we use the TensorFlow-Framework [31] version 2.12. For the baseline models, we

use the implementations of PyOD [55] version 1.0.9.

5.1.2. Data sets

To conduct the experiments, we use 8 real-life data sets from [9]. In this study, we do not

focus on low-dimensional data sets. Therefore, we exclude data sets from [9] with less

#Instances #Outliers #Features

Ionosphere 351 126 32

KDDCup99 60632 246 38

Waveform 3443 100 21

Annthyroid 7200 534 21

Arrhythmia 450 206 259

Cardiotocography 2126 471 21

InternetAds 3264 454 1555

SpamBase 4601 1812 57

Table 5.1.: Comparison of the used data sets

21

5. Experimental Design

than 20 features and then randomly select 8 of the extant 12 data sets. Furthermore, we

use the normalized version without duplicates and categorical attributes of each data set.

5.1.3. Baselines

We use different models to compare FeGAN with. To have a broad representation, we

include multiple examples from both, shallow and deep, methods. Our deep baselines

consist of one non-generative method, Deep SVDD [41], and two state-of-the-art GAN

methods for Outlier Detection, AnoGAN [44] andMO-GAAL [30]. For the shallowmethods,

we choose LOF, KNN and OC-SVM as they are amongst the most popular shallow methods

and [9] show that they are statistically better on a large scale of data sets. Despite of the

existence of more powerful deep methods, these three shallowmethods remain competitive

as an easier parametrization allows for more consistent high performance under average

scenarios. When optimized, deep models tend to gain the upper hand [19].

In the following, we briefly introduce each baseline method except for AnoGAN and

MO-GAAL, as these two models are part of the related work and are thoroughly explained

in Chapter 3.

KNN. 𝑘-Nearest Neighbors (KNN) [18] is a distance-based algorithm. For a given distance

function, KNN returns each sample 𝑜 ∈ X where there are no more than 𝑘 objects closer

to the current query sample 𝑞 ∈ X than 𝑜 . The 𝑘-NN distance of 𝑜 is the distance to the

object that has the 𝑘th. biggest distance to 𝑜 .

With appropriate adjustments, KNN can be used for various task such as classification or

Outlier Detection. To detect outliers, the 𝑘-NN distance in combination with a reasonable,

data set-specific, threshold can be used.

LOF. The Local Outlier Factor (LOF) [7] is a density-based Outlier Detection method.

The algorithm compares the 𝑘-NN distance of an object 𝑜 ∈ X to the 𝑘-NN distances of its

nearest neighbors. The LOF is directly used as the outlier score. Only a high LOF implies

𝑜 being an outlier. However, it is not trivial to interpret the outlier score as it is unclear

how to determine whether the LOF is high.

OC-SVM. In an unsupervised setting, One-Class SVMs [46] project samples onto a higher-

dimensional space. In that higher-dimensional space, OC-SVM then tries to separate all

samples from their origin using a hyperplane. While doing that, it also tries to maximize

the distance between said hyperplane and the origin. New samples projected between the

origin and the hyperplane then are called outliers.

Deep SVDD. Deep Support Vector Data Description (DSVDD) [41] combines the objective

of SVDD with deep learning. While fitting a hypersphere of minimal volume in the SVDD

manner, it jointly trains a Neural Network to map samples into that hypersphere to learn

a useful feature representation. That way, DSVDD defines an anomaly score to classify

samples. Thus, the model is suited for One-Class classification because positive samples

22

5.1. Experimental settings

are mapped close to the center of the hypersphere, while anomalous samples are mapped

further away.

5.1.4. Hyperparameters

As done by [19], we use the default parameters of PyOD [55] version 1.0.9. If possible, [55]

use hyperparameters recommended by the original authors of each method to provide fair

comparison settings. If there are no recommended hyperparameters, PyOD opts for reason-

able, field acknowledged, values. For further information regarding the hyperparameters,

please refer to [55].

For FeGAN, we choose the following hyperparameters:

• The learning rate of the Generator: 𝑙𝑟𝑔 = 0.001

• The learning rate of the Subdiscriminators: 𝑙𝑟𝑑 = 0.01

• The number of Subdiscriminators: 𝑘 = 2 ∗
√
#𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠

• The number training epochs: 𝑠𝑡𝑜𝑝_𝑒𝑝𝑜𝑐ℎ𝑠 = 30 (The total number of epochs is

3 ∗ 𝑠𝑡𝑜𝑝_𝑒𝑝𝑜𝑐ℎ𝑠)

5.1.5. Evaluation Metric

AUC. To evaluate the quality of a model, we follow related research [44, 30, 41] and use

the Receiver Operating Characteristic Area Under Curve (ROC AUC) [5]. The ROC AUC

plots the True Positive Rate (TRP) on the Y-axis against the False Positive Rate (FPR) on

the X-axis.

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 +𝑇𝑁 ,

where TP are true positive and FN are false negative predictions. Since the ROC is based

on rates rather than total numbers, it is insensitive to the number of outliers/imbalanced

class members. We then calculate the area under the curve (the integral) of the plot. A

ROC AUC near 1 implies that the model predicts very well while a value near 0 implies

that the model predicts backwards. A value near
1

2
implies that the model is no better

than random guessing. Finally, compare the ROC AUC values of different models to assess

which model works best for each data set.

Post hoc. For further comparison of FeGAN against the baselines, we use ranking based

post hoc testing [36]. The experimental results we gather are ordinal and our models

are independent, but run the experiments under the same conditions. Additionally, we

assume that each model performs differently for each data set. Thus, the non-parametric

Kruskal-Wallis test [28] is well suited for our use-case. Furthermore, due to its superior

ability to balance Type I and Type II errors compared to other test like Nemenyi’s [34],

we choose the Conover-Iman test [11]. For that, we rank the median AUC of each model

per dataset. We assign 1 to the highest AUC and 7 to the lowest. Now, the first step is to

apply the Kruskal-Wallis test to check whether there are significant differences among the

23

5. Experimental Design

models (based on a significance level 𝛼). If this test is negative, there is no need for further

evaluation as there are no significant differences. Finally, we apply the Conover-Iman test.

Assuming the Kruskal-Wallis test is positive with regards to 𝛼 , the test now compares,

pairwise, if there is a significant difference between the average rank of two models.

5.2. Experiments

5.2.1. One-Class classification

To compare the models, we analyze their performance inside the One-Class classifica-

tion problem for Outlier Detection [32]. We use the same methodology for every model,

including all baselines, and then gather the ROC-AUC of the predictions. To enable repro-

ducibility and prevent the outcome of the experiment to be reliant on non-deterministic

behaviour due to random splitting and feature selection, we repeat the experiment for

five seeds. While more repetitions with different seeds help improve the stability of mea-

surements, this was not feasible due to the large computational cost of deep models in

combination with the time constraints of this thesis. In this experiment, we train the

models on inlier samples only and follow Algorithm 3. The first step of the experiment is

to split our data. We randomly choose 80% of the inlier class as the training set. The other

20% of the inlier class and all outlier samples then are assigned to the test set. For each

seed individually, this split stays the same, meaning that every model trains on the same

training set and test set. During the training process, we set the stop_epochs to 100. We do

this to gain insight in the learning behaviour of FeGAN and also then choose the number

of epochs where FeGAN performs the best measured by ROC-AUC. For every data set,

except KDDCup99, we choose a batch size of min(500, #𝑠𝑎𝑚𝑝𝑙𝑒𝑠) as this proved to work

well [30]. KDDCup99 is, by far, the biggest data set of all. With the resources available,

training with a batch size of 500 would not be feasible. Therefore, we choose a batch size

of 1000 in this case.

Algorithm 3 One-Class Classification

Input: Set of all models used = Models, List of seeds = Seeds

for seed ∈ Seeds do
Set the current seed

Split the data in two sets
train_set = 80% of the inlier samples

test_set = outliers and the other 20% of the inliers

for model ∈ Models do
Train the model on the training set

Calculate AUC of the model on the test set

Get median AUC and standard deviation of each model and compare them

24

5.2. Experiments

5.2.2. Sensitivity to parameter K

The parameter K decides how many Discriminators FeGAN uses. Therefore, this also

decides how many Feature Subspaces are used to find hidden outliers. FeGAN’s runtime

heavily depends on K, as it scales linearly with it. While more Feature Subspaces can result

in better prediction accuracy, it might not be worth the additional required resources.

Thus, it is important to keep the cost-benefit ratio of adding more Discriminators in mind.

To analyze this, we run the One-Class classification experiment with a range of values

for K. We then choose, like with the One-Class classification, the highest reached median

ROC-AUC for all values of K.

25

6. Evaluation

In this chapter, we evaluate the prediction quality of FeGAN by comparison with the

baseline models, while also analyzing framework-specific properties of GAN influencing

the performance of FeGAN.

First, we evaluate the the One-Class classification experiment with regards to the

performance measured by the ROC-AUC [5]. After that, we evaluate the Conover-Iman test

results [11], followed by an analysis of FeGAN’s sensitivity to the number of Discriminators.

Then, we talk about the training of our model and difficulties we face during the process.

Finally, we talk about the limitations of FeGAN and this thesis.

6.1. One-Class Classification

To compare and evaluate models, we use the ROC-AUC. In table 6.1, we display the results

of the experiments. We compare the median ROC-AUC value of each model across all the

seeds. In the table, the highest value for each data set is marked bold.

Results FeGANV1 and V2 are of different complexities. Thus, they perform differently for

each data set as seen in table 6.1. To take that into account, we follow our recommendations

and only look at one version for each data set, the one we would recommend based on the

amount of features. Furthermore, it is important to mention that we select the highest

reached median ROC-AUC for FeGAN over all epochs. We do this because developing a

proper stopping criteria for an unsupervised method like FeGAN is not feasible time-wise.

Out of eight data sets we experiment on, FeGAN has the highest median AUC for five of

those. This shows that, even without much domain knowledge to choose Neural Network

architectures, FeGANmanages to outperform the shallow and deep baselines on a majority

of our data sets, indicating that Feature Subspace search works well for GANs. Even with a

random Feature Bagging Ensemble, where Feature Subspaces are not chosen optimally, this

approach shows to outperform several baselines in these benchmark data sets. Looking at

Table 6.1, one can observe FeGAN does not always outperform every single baseline model.

We suspect this is due to different reasons. For one, we lack computational resources

and time to test higher dimensional data sets. Thus, it is hard to gain further insight into

the behaviour of FeGAN for these cases like InternetAds. Therefore, especially for high

dimensional data sets, more experiments should be executed to properly evaluate FeGAN’s

performance for those. Another possible reason is that our chosen Network architecture

might not be complex enough to properly learn the underlying data distribution for some

data sets. However, even when not able to outperform baseline models in every case, one

can easily deduce the overall great performance and future potential of FeGAN.

27

6. Evaluation

Arrhythmia Waveform SpamBase InternetAds

FeGAN V1 0.7488 ± 0.0146 0.8499 ± 0.0352 0.6641 ± 0.0159 0.7592 ± 0.0054

FeGAN V2 0.7500 ± 0.0117 0.8293 ± 0.0128 0.7368 ± 0.0144 0.8068 ± 0.0155

LOF 0,7277 ± 0,049 0,7561 ± 0,0083 0,7218 ± 0,0124 0,8545 ± 0,0077
KNN 0,7334 ± 0,0421 0,7658 ± 0,0053 0,7028 ± 0,0059 0,809 ± 0,005

OC_SVM 0.7442 ± 0.0379 0.5514 ± 0.0073 0.6288 ± 0.0092 0.7026 ± 0.0046

AnoGAN 0,4752 ± 0,0803 0,6439 ± 0,1559 0,4522 ± 0,092 0,5916 ± 0,1124

MO_GAAL 0,7447 ± 0,024 0,8563 ± 0,0071 0,6774 ± 0,0574 0,7024 ± 0,0299

Deep SVDD 0,7308 ± 0,0384 0,65 ± 0,0564 0,7249 ± 0,0367 0,8205 ± 0,0089

Annthyroid Cardiotocography Ionosphere KDDCup99

FeGAN V1 0.5030 ± 0.0269 0.6917 ± 0.0807 0.7910 ± 0.0344 0.9884 ± 0.0124
FeGAN V2 0.7464 ± 0.0304 0.8864 ± 0.0443 0.9035 ± 0.0143 0.9806 ± 0.0067

LOF 0,6769 ± 0,005 0,8038 ± 0,0094 0,9432 ± 0,0077 0,9222 ± 0,0029

KNN 0,6409 ± 0,0072 0,7763 ± 0,0054 0,9778 ± 0,0077 0,976 ± 0,0011

OC_SVM 0.4675 ± 0.0052 0.8496 ± 0.0079 0.8129 ± 0.0247 0.9854 ± 0.0006

AnoGAN 0,4875 ± 0,0453 0,703 ± 0,0844 0,8538 ± 0,0327 0,9367 ± 0,0699

MO_GAAL 0,5073 ± 0,0445 0,535 ± 0,0465 0,7198 ± 0,0277 0,2493 ± 0,0346

Deep SVDD 0,3328 ± 0,2809 0,6801 ± 0,2062 0,9511 ± 0,0151 0,9111 ± 0,0372

Table 6.1.: Results of One-Class classification. Median ROC-AUC ± standard deviation.

Additionally, we statistically test the performance of out model utilizing a Conover-Iman

test [11] in Table 6.2 to assess whether FeGAN’s performance ranks significantly higher

than the other baseline models.

Conover-Iman. In table 6.2, we show the results of a Conover-Iman test after a positive

Kruskal-Wallis test. The Conover-Iman test signals significant differences for pairwise

comparison between methods. We test for 𝛼1 = 0.1, where ’+’ indicates a positive and ’–’

indicates a negative difference, and 𝛼2 = 0.05, signaled by ’++’ and ’– –’. Clearly, the table

shows that FeGAN outperforms four out of six baselines significantly even with regards

FeGAN LOF kNN OC-SVM AnoGAN MO-GAAL DeepSVDD

FeGAN = ++ ++ ++ ++

LOF = ++ +

kNN = ++ +

OC-SVM – – =

AnoGAN – – – – – – = -

MO-GAAL – – – – =

DeepSVDD – – + =

Table 6.2.: Results for Conover-Iman’s test on the rankings of the models

28

6.1. One-Class Classification

1 5 10 20 25 30 50
K

0.60

0.65

0.70

0.75

0.80

0.85

0.90

R
O

C
 A

U
C

(a) V1

1 5 10 20 25 30 50
K

0.60

0.65

0.70

0.75

0.80

0.85

0.90

R
O

C
 A

U
C

(b) V2

Figure 6.1.: Sensitivity of FeGAN to the number of Discriminators K

to 𝛼2. Only for LOF and KNN there is no significant performance difference, which also is

in line with table 6.1, as beating these two methods is, again, not trivial.

Overall, the results gained by the One-Class classification are very promising and

motivate us to further work on FeGAN, improving the performance and prediction quality

even more.

6.1.1. Sensitivity to parameter K

Looking at Figure 6.1, the first interesting observation is that FeGAN V2 outperforms V1

noticeably while facing less variance. Though this was not the goal of this experiment, it

is an important finding and should be analyzed through further experiments.

As for the sensitivity to parameter K, V1 and V2 react differently. While V1 peaks

around 20 to 25 Discriminators, V2 first peaks at 10 Discriminators and then goes up even

further at 50. Since V1 should be used for smaller data sets, it is expected that, after a

certain number, more Discriminators may not yield more performance. For V2 it is clear

that the cost-benefit ratio of 10 versus 50 Discriminators is not worth it. The additional

accuracy does not justify the much longer runtime.

However, the results of this experiment do not completely match with our One-Class

classification experiment. There, we used 𝐾 = 2 ∗
√
𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠 , while in this experiment,

we used a fixed number of K for all data sets, regardless of their size or dimensionality. A

more fine-grained analysis might bring more insight in how to dynamically choose K.

6.1.2. Training

Looking at the training histories of the Generator and Discriminators of FeGAN, as well as

the ROC-AUC curve over the epochs, brings valuable information about the performance

of FeGAN. In this section, we analyze different plots to gain in depth insight about the

training process and possible flaws and strengths of FeGAN. Keep in mind that FeGAN

consists of one Generator and 𝑘 Discriminators. Hence, the displayed loss is the mean loss

29

6. Evaluation

over all Discriminators. In the plots, we show the mean ROC-AUC and the 95% confidence

interval.

0 50 100 150 200 250 300
Epochs

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Lo
ss

Discriminators
Generator

0.0

0.2

0.4

0.6

0.8

1.0

R
O

C
 A

U
C

Discriminators
Generator
ROC AUC

Figure 6.2.: Training history of FeGAN V2 on InternetAds

Looking at Table 6.1, it is clear that FeGAN lacks performance when training on Interne-

tAds. With 1555 Features, this data set has the highest number of dimensions and it is not

surprising that FeGAN struggles with this. The Generator as well as the Discriminators

loss curves are not unusual for GANs [30] and are expected to behave as in Figure 6.2. Now,

in this plot, it looks like FeGAN is still too weak. After about 60 epochs, the ROC-AUC

starts dropping. This can be an indicator of overfitting, but since we still train with simple

network architectures, overfitting the overall model on such a high dimensional data set is

very unlikely. More likely, FeGAN simply fails to capture the underlying data distribution

well. Possible resons for this could be the simple network architecture or the randomly

chosen subspaces. With 2
1555

possible Feature Subspaces, choosing only 𝑘 informative

subspaces to train on is very hard, especially with random Feature Subspace selection.

Also, an Ensemble of 𝑘 Discriminators is limited by the available computational resources.

Training 1000 Discriminators for one model is, at least for this thesis, neither realistic nor

feasible.

Figure 6.3 shows a negative example for FeGAN. The combination of a rapid drop in

ROC-AUC and the sudden, fast, divergence of the Generator indicates that the Generator

generates samples that are easy for the Discriminators to distinguish from real samples.

Thus, the training process fails. However, a plausible explanation for this is the imple-

mented stopping mechanism for the Generator. Right after the Generator stops learning,

the ROC-AUC reaches a peak. But since the Discriminators keep learning after that, it

explains why the Generator fails to perform, resulting in a strong case of overfitting for

the Discriminators.

30

6.1. One-Class Classification

0 50 100 150 200 250 300
Epochs

0.0

0.5

1.0

1.5

2.0

2.5

Lo
ss

Discriminators
Generator

0.0

0.2

0.4

0.6

0.8

1.0

R
O

C
 A

U
C

Discriminators
Generator
ROC AUC

Figure 6.3.: Training history of FeGAN V2 on Ionosphere

Figure 6.4 is a positive example of FeGAN’s training. Over time, the Generator’s loss

rises slowly and saturates (due to optimization problem 4.2), the Discriminators’ loss sinks,

and the ROC-AUC becomes higher over time without collapsing.

6.1.3. Limitations

The biggest limitations of this thesis are time and resources. As time is limited and the

computational resources are scarce in our current experimental set-up, we have to focus

on the most important parts of FeGAN, the Feature Subspace Selection and the extension

of the GAN framework by an Ensemble. There is not much time to experiment with the

Network Architectures or to study hyperparameter sensibility. We are convinced that

adjusting FeGAN’s Neural Network architectures to match different use cases/data sets will

even further improve the accuracy of the model. But since we run experiments on several

data sets, some of them very computationally expensive, these kinds of adjustments are

not possible. Additionally, exploring a correct stopping criteria is a must for unsupervised

methods. This is one of the most important parts missing in FeGAN and should be the first

step towords a correct implementation, but, again, it was not possible during the short

time-frame of this thesis.

Furthermore, we lack domain knowledge to implement these kinds of adjustments due

to the unsupervised setting. While it is possible to make the Network architecture more

precise by adding domain knowledge [12], this falls out of the scope of this thesis.

31

6. Evaluation

0 20 40 60 80
Epochs

0

1

2

3

4

Lo
ss

Discriminators
Generator

0.0

0.2

0.4

0.6

0.8

R
O

C
 A

U
C

Discriminators
Generator
ROC AUC

Figure 6.4.: Training history of FeGAN V2 on Annthyroid

32

7. Conclusion

In this thesis, we proposed FeGAN, a novel extension of the GAN framework [17], to

enable the detection of hidden outliers. We extended the vanilla GAN model by multiple

Discriminators to form an Ensemble, improving prediction quality. While each Discrimi-

nator learns on an individual, randomly drawn, Feature Subspace, the single Generator

generates samples for all of them. This extension did not come without challenges, as the

target function of a vanilla GAN does not allow the usage of multiple Discriminators at

once. Thus, we adjusted the target function to take the novel Ensemble structure of our

model into consideration.

After experimenting with FeGAN in the field of Novelty Detection and analyzing the

results, we quickly noticed the great performance and potential in FeGAN. Beating most

shallow and deep baselines, FeGAN shows that Subspace Search improves the ability to find

(hidden) outliers without the need of a complex network architecture. However, during

experimentation, we not only observed great results, but also that the choice of Feature

Subspaces matters. While, in this thesis, random Subspace selection was sufficient to yield

good performance, there were a few cases in which it became obvious that the random

choice hindered FeGAN’s full potential. Therefore, a different Subspace Selection method

should be explored. Finally, we evaluated the impact of the number of Discriminators

(𝑘) in the Ensemble, which directly results in more explored Feature Subspaces. This last

experiment showed that, while FeGAN’s performance is dependent on this parameter,

the performance of the model converges after a certain number of Discriminators. As

FeGAN’s runtime scales linearly with this number, this observation is helpful to prevent a

waste of resources and time.

Finally, we conclude that, in this thesis, we showed the power of FeGAN and Subspace

Search with GANs for Novelty Detection. We are aware this potential has not been fully

exploited yet and recommend further research.

7.1. Future Work

Scarcity of computational resources and time constraints are the biggest obstacles as to

why we could not research FeGAN further. Nevertheless, there are many open topics that

should be tackled to improve FeGAN. First, analysis of FeGAN’s behaviour when dealing

with big data sets or data sets with high dimensionalities will bring more insight into how

FeGANhandles theses cases, leaving room for adjustments of themodel. Second, a stopping

criteria should be explored. We assume this will improve the prediction quality of the

model a lot due to the prevention of overfitting, but could not implement a stopping criteria,

as this process is very time consuming. Additionally, the network architecture of FeGAN

can also be adjusted and experimented with, as this broadens the use cases of FeGAN. Even

33

7. Conclusion

though we were interested in exploring both of these issues, they consume a lot of time

for deep, unsupervised methods, making it hard for us to experiment. Furthermore, it is

possible to extend the Ensemble structure to not only incorporate multiple Discriminators,

but also multiple Generators. Following a similar approach to MO-GAAL [30], this could

prevent the problem of mode collapse. However, this adjustment requires a new target

function aswell. Lastly, a sensibility study of FeGAN to the selection of Feature Subspaces

is required to evaluate how the Ensemble structure of the model handles different Subspace

Selection methods.

34

Bibliography

[1] Charu C Aggarwal and Philip S Yu. “Outlier detection for high dimensional data”.

In: Proceedings of the 2001 ACM SIGMOD international conference on Management of
data. 2001, pp. 37–46.

[2] Charu C. Aggarwal. Outlier Analysis. Springer, 2013. Chap. 6. isbn: 978-1-4614-6396-
2. url: http://dx.doi.org/10.1007/978-1-4614-6396-2.

[3] Kevin Beyer et al. “When is “nearest neighbor” meaningful?” In: Database The-
ory—ICDT’99: 7th International Conference Jerusalem, Israel, January 10–12, 1999
Proceedings 7. Springer. 1999, pp. 217–235.

[4] Léon Bottou. “Stochastic gradient descent tricks”. In: Neural Networks: Tricks of the
Trade: Second Edition. Springer, 2012, pp. 421–436.

[5] Andrew P. Bradley. “The use of the area under the ROC curve in the evaluation of

machine learning algorithms”. In: Pattern Recognition 30.7 (1997), pp. 1145–1159.

issn: 0031-3203. doi: https://doi.org/10.1016/S0031-3203(96)00142-2. url:

https://www.sciencedirect.com/science/article/pii/S0031320396001422.

[6] Leo Breiman. “Bagging predictors”. In: Machine learning 24 (1996), pp. 123–140.

[7] Markus M Breunig et al. “LOF: identifying density-based local outliers”. In: Proceed-
ings of the 2000 ACM SIGMOD international conference on Management of data. 2000,
pp. 93–104.

[8] Robert Bryll, Ricardo Gutierrez-Osuna, and Francis Quek. “Attribute bagging: im-

proving accuracy of classifier ensembles by using random feature subsets”. In:

Pattern Recognition 36.6 (2003), pp. 1291–1302. issn: 0031-3203. doi: https://doi.

org/10.1016/S0031-3203(02)00121-8. url: https://www.sciencedirect.com/

science/article/pii/S0031320302001218.

[9] Guilherme O Campos et al. “On the evaluation of unsupervised outlier detection:

measures, datasets, and an empirical study”. In:Data mining and knowledge discovery
30 (2016), pp. 891–927.

[10] Varun Chandola, Arindam Banerjee, and Vipin Kumar. “Anomaly detection: A

survey”. In: ACM computing surveys (CSUR) 41.3 (2009), pp. 1–58.

[11] WJ Conover and RL Iman. Multiple-comparisons procedures. Informal report. Tech.
rep. Los Alamos National Lab.(LANL), Los Alamos, NM (United States), 1979.

[12] Tirtharaj Dash et al. “Incorporating domain knowledge into deep neural networks”.

In: arXiv preprint arXiv:2103.00180 (2021).

[13] Federico Di Mattia et al. “A survey on gans for anomaly detection”. In: arXiv preprint
arXiv:1906.11632 (2019).

35

Bibliography

[14] Thomas G Dietterich. “Ensemble methods in machine learning”. In: International
workshop on multiple classifier systems. Springer. 2000, pp. 1–15.

[15] Jeff Donahue, Philipp Krähenbühl, and Trevor Darrell. “Adversarial feature learning”.

In: arXiv preprint arXiv:1605.09782 (2016).

[16] Matthias Feurer and Frank Hutter. “Hyperparameter optimization”. In: Automated
machine learning: Methods, systems, challenges (2019), pp. 3–33.

[17] Ian Goodfellow et al. “Generative adversarial nets”. In: Advances in neural informa-
tion processing systems 27 (2014).

[18] Gongde Guo et al. “KNN model-based approach in classification”. In: On The Move
to Meaningful Internet Systems 2003: CoopIS, DOA, and ODBASE: OTM Confederated
International Conferences, CoopIS, DOA, and ODBASE 2003, Catania, Sicily, Italy,
November 3-7, 2003. Proceedings. Springer. 2003, pp. 986–996.

[19] Songqiao Han et al. “Adbench: Anomaly detection benchmark”. In: Advances in
Neural Information Processing Systems 35 (2022), pp. 32142–32159.

[20] Marti A. Hearst et al. “Support vector machines”. In: IEEE Intelligent Systems and
their applications 13.4 (1998), pp. 18–28.

[21] Tin Kam Ho. “The random subspace method for constructing decision forests”. In:

IEEE transactions on pattern analysis and machine intelligence 20.8 (1998), pp. 832–
844.

[22] Tin Kam Ho. “The random subspace method for constructing decision forests”. In:

IEEE Transactions on Pattern Analysis and Machine Intelligence 20.8 (1998), pp. 832–
844. doi: 10.1109/34.709601.

[23] Thomas Hofmann, Bernhard Schölkopf, and Alexander J Smola. “Kernel methods in

machine learning”. In: (2008).

[24] He Huang, Philip S Yu, and Changhu Wang. “An introduction to image synthesis

with generative adversarial nets”. In: arXiv preprint arXiv:1803.04469 (2018).

[25] Fabian Keller, Emmanuel Muller, and Klemens Bohm. “HiCS: High contrast sub-

spaces for density-based outlier ranking”. In: 2012 IEEE 28th international conference
on data engineering. IEEE. 2012, pp. 1037–1048.

[26] Mario Köppen. “The curse of dimensionality”. In: 5th online world conference on soft
computing in industrial applications (WSC5). Vol. 1. 2000, pp. 4–8.

[27] Hans-Peter Kriegel, Matthias Schubert, and Arthur Zimek. “Angle-based outlier

detection in high-dimensional data”. In: Proceedings of the 14th ACM SIGKDD inter-
national conference on Knowledge discovery and data mining. 2008, pp. 444–452.

[28] William H Kruskal and W Allen Wallis. “Use of ranks in one-criterion variance

analysis”. In: Journal of the American statistical Association 47.260 (1952), pp. 583–

621.

[29] Yann LeCun, Yoshua Bengio, et al. “Convolutional networks for images, speech, and

time series”. In: ().

36

[30] Yezheng Liu et al. “Generative adversarial active learning for unsupervised outlier

detection”. In: IEEE Transactions on Knowledge and Data Engineering 32.8 (2019),

pp. 1517–1528.

[31] Martín Abadi et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Sys-
tems. Software available from tensorflow.org. 2015. url: https://www.tensorflow.

org/.

[32] Mary M Moya and Don R Hush. “Network constraints and multi-objective optimiza-

tion for one-class classification”. In: Neural networks 9.3 (1996), pp. 463–474.

[33] Emmanuel Müller et al. “Outlier ranking via subspace analysis in multiple views

of the data”. In: 2012 IEEE 12th international conference on data mining. IEEE. 2012,
pp. 529–538.

[34] Peter Björn Nemenyi. “Distribution-free Multiple Comparisons”. PhD thesis. Prince-

ton University, 1963.

[35] Chigozie Nwankpa et al. “Activation functions: Comparison of trends in practice

and research for deep learning”. In: arXiv preprint arXiv:1811.03378 (2018).

[36] Dulce G Pereira, Anabela Afonso, and Fátima Melo Medeiros. “Overview of Fried-

man’s test and post-hoc analysis”. In: Communications in Statistics-Simulation and
Computation 44.10 (2015), pp. 2636–2653.

[37] Marco AF Pimentel et al. “A review of novelty detection”. In: Signal processing 99

(2014), pp. 215–249.

[38] Alec Radford, Luke Metz, and Soumith Chintala. “Unsupervised representation

learningwith deep convolutional generative adversarial networks”. In: arXiv preprint
arXiv:1511.06434 (2015).

[39] Van Rossum. “Python tutorial, technical report CS-R9526”. In: (No Title) (1995).

[40] Sebastian Ruder. “An overview of gradient descent optimization algorithms”. In:

arXiv preprint arXiv:1609.04747 (2016).

[41] Lukas Ruff et al. “Deep one-class classification”. In: International conference on
machine learning. PMLR. 2018, pp. 4393–4402.

[42] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. “Learning represen-

tations by back-propagating errors”. In: nature 323.6088 (1986), pp. 533–536.

[43] David E Rumelhart, James L McClelland, and CORPORATE PDP Research Group.

Parallel distributed processing: Explorations in the microstructure of cognition, Vol. 1:
Foundations. MIT press, 1986.

[44] Thomas Schlegl et al. “Unsupervised anomaly detection with generative adversarial

networks to guide marker discovery”. In: International conference on information
processing in medical imaging. Springer. 2017, pp. 146–157.

[45] Bernhard Schölkopf. “The kernel trick for distances”. In: Advances in neural infor-
mation processing systems 13 (2000).

[46] Bernhard Schölkopf et al. “Support vector method for novelty detection”. In: Ad-
vances in neural information processing systems 12 (1999).

37

Bibliography

[47] Burr Settles. “Active learning literature survey”. In: (2009).

[48] Sagar Sharma, Simone Sharma, and Anidhya Athaiya. “Activation functions in

neural networks”. In: Towards Data Sci 6.12 (2017), pp. 310–316.

[49] David MJ Tax and Robert PW Duin. “Support vector data description”. In: Machine
learning 54 (2004), pp. 45–66.

[50] Steven Walczak and Narciso Cerpa. “Heuristic principles for the design of artificial

neural networks”. In: Information and software technology 41.2 (1999), pp. 107–117.

[51] Hongzhi Wang, Mohamed Jaward Bah, and Mohamed Hammad. “Progress in outlier

detection techniques: A survey”. In: Ieee Access 7 (2019), pp. 107964–108000.

[52] Roger Weber, Hans-Jörg Schek, and Stephen Blott. “A quantitative analysis and

performance study for similarity-search methods in high-dimensional spaces”. In:

VLDB. Vol. 98. 1998, pp. 194–205.

[53] Martha White et al. “Convex multi-view subspace learning”. In: Advances in neural
information processing systems 25 (2012).

[54] Houssam Zenati et al. “Efficient gan-based anomaly detection”. In: arXiv preprint
arXiv:1802.06222 (2018).

[55] Yue Zhao, Zain Nasrullah, and Zheng Li. “PyOD: A Python Toolbox for Scalable

Outlier Detection”. In: Journal of Machine Learning Research 20.96 (2019), pp. 1–7.

url: http://jmlr.org/papers/v20/19-011.html.

[56] Jia-Jie Zhu and José Bento. “Generative adversarial active learning”. In: arXiv preprint
arXiv:1702.07956 (2017).

[57] Arthur Zimek, Ricardo JGB Campello, and Jörg Sander. “Ensembles for unsupervised

outlier detection: challenges and research questions a position paper”. In:Acm Sigkdd
Explorations Newsletter 15.1 (2014), pp. 11–22.

[58] Arthur Zimek, Erich Schubert, and Hans-Peter Kriegel. “A survey on unsupervised

outlier detection in high-dimensional numerical data”. In: Statistical Analysis and
Data Mining: The ASA Data Science Journal 5.5 (2012), pp. 363–387.

38

A. Appendix

A.1. Code

The results of this thesis will be further researched and published in a scientific paper.

Thus, our code will be released with that paper and not with this thesis.

39

	Abstract
	Zusammenfassung
	Introduction
	Fundamentals
	Neural Networks
	Updating the weights and bias vectors

	Autoencoders
	Generative Adversarial Networks
	Training

	Novelty Detection
	Ensemble methods
	Feature Bagging

	Related Work
	Non-generative Novelty Detection
	Shallow methods
	Kernel methods and One-Class Support Vector Machines

	Generative Novelty detection
	BiGAN
	AnoGAN
	Multiple-Objective Generative Adversarial Active Learning (MO-GAAL)

	FeGAN
	Introduction
	Ensemble method
	Target Function
	Architecture
	Training Details

	Experimental Design
	Experimental settings
	Computational Resources and Technical Details
	Data sets
	Baselines
	Hyperparameters
	Evaluation Metric

	Experiments
	One-Class classification
	Sensitivity to parameter K

	Evaluation
	One-Class Classification
	Sensitivity to parameter K
	Training
	Limitations

	Conclusion
	Future Work

	Bibliography
	Appendix
	Code

